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An approximate determination of the critical eigenvalue of the neutron transport equation 
in integral form, within both the one speed and energy multigroup models, for a homogeneous 
medium, is achieved by means of a variational technique. The space asymptotic solutions for 
both the direct and adjoint problems are used as trial functions. A variational procedure is 
also developed and numerically exploited within the Fourier transformed domain, where 
noticeable theoretical features can be demonstrated. It is evidenced that excellent results can 
be obtained with little computational effort, and a set of critical calculations in plane 
geometry is presented and discussed. Q 1988 Academic PESS, IIIC. 

1. INTRODUCTION AND SCOPE OF THE WORK 

The determination of the eigenvalue of the stationary neutron transport equation 
is one of the main problems of nuclear reactor physics. Actually at least four dif- 
ferent eigenvalue formulations have been devised in the past, each of them retaining 
some special physical characteristics and possibility of interpretation [ 11. 

Although in practical applications it looks like the k,,-eigenvalue has deserved a 
little more attention, we shall here always refer to the so called y-eigenvalue [2], 
since, besides any physical considerations, often it can be handled in a more com- 
prehensive way for both theoretical and numerical studies. The y-eigenvalue is also 
easily introduced in the frame of transport multienergy-group isotropic scattering 
system of integral equations over the vacuum bounded volume V, which we shall 
consider here, as 

5 ~,vC,,~,.(r’) + ,f Cne+pgs(r’) 
g’= 1 g’= 1 1 

1 G =- 
Ix 

e-zglr--I’/ 

Y ” 
~n+,4gw Ir-rr)Iz dr’, g = 1, . . . . G 

g’= I 

or, more concisely, in operator form: 

cDg=; c &a+ 
AT’ 1 

When y = 1 the physical system is said to be “critical.” 
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The nomenclature is standard in reactor physics, as may be found in [3,4], for 
instance. We shall propose the extension of the variational approach commonly 
employed for calculations of the one speed equation y-eigenvalues [5] to mul- 
tienergy-group cases, thus constituting the background for the extension of the 
related computational techniques. 

As trial functions we propose the use of the direct and adjoint space asymptotic 
neutron distributions, which are easily computed and retain a large physical 
significance in the transport model. We shall thus present direct asymptotic theory 
[6] and work out explicitly the adjoint one. 

Some calculations will then be presented and discussed. Finally a formal 
procedure to symmetrize the operator, hence giving a more definite and reliable 
basis to the whole variational frame, will be outlined and employed for a few 
calculations, trying to put into evidence its main implications. 

Our interest is mainly restricted here to the physical comprehension of transport 
phenomena, rather than to pure mathematical considerations. We actually look 
forward to theoretical investigations oriented to get an insight to extend the 
methodology to future effective applications, such as finite differences and elements, 
boundary elements, and synthesis methods, which can overcome the shortcoming of 
asymptotic theory, that is, the possibility of describing only materially 
homogeneous systems. 

2. VARIATIONAL METHODS APPLIED TO THE DETERMINATION OF 
NEUTRON TRANSPORT EIGENVALUES 

Variational methods represent quite a versatile tool for the formulation and 
investigation of a great deal of physical problems [7]. Many approximate techni- 
ques may be derived in a very neat and elegant fashion. 

The field of transport theory has stimulated the deduction of quite a few 
variational principles for the solution of typical problems [3, 4, 8, 9, lo], the refor- 
mulation of known approximations [ 111, or the formulation of new ones [ 121. 
However, the application of variational techniques for the calculation of the eigen- 
values of the linear integral transport equation in its most general energy dependent 
form presents a few theoretical problems, specially connected to the fact that the 
transport operator is not self-adjoint. That implies, in particular, among other dif- 
ficulties, that functionals do not take on minimum or maximum values, but rather 
show stationary saddle points [ll, 131. That is, partially, one of the reasons why 
variational principles have been especially employed in one speed transport, where 
the integral operator is self-adjoint (symmetric) [S]. Some applications to multi- 
group energy dependent problems have been presented in [ 131, although with 
regards to diffusion theory. 

We are here involved in the determination of the y-eigenvalue of the transport 
equation in the multienergy-group physical model. We shall therefore make use of 
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the extension of a classical Galerkin principle for the variational estimate of eigen- 
values [9], namely 

(3) 

where @J: denotes the adjoint flux, and we have introduced the classical definition, 
at least for the transport field, for the bilinear form expressing the “scalar product” 
of direct and adjoint space functions. 

Owing to the already recalled non-symmetricity of the operator, it is not possible 
to draw definite conclusions on the bounds and generally specify the sign [14] of 
the error of the operation. It is foreseen that the choice of quite accurate trial 
functions cD~ and @z is mandatory in order to obtain satisfactorily good results, 
since no consideration tells us which is the “optimum” trial function. 

Actually asymptotic theory yields by far the “best” space-energy trial functions 
(both in the direct and adjoint spaces) we can hope for. Such a theory preserves, 
but for the physical boundaries of the system, all the peculiar transport features and 
its calculation is simple and fast. Asymptotic space functions have already been 
suggested as excellent trial functions within variational principles, at least for 
optically large enough systems, but always for one speed calculations only [9, 151. 
As a matter of fact, the theoretical foundation for the transport eigenvalue problem 
might be settled if the equation could be, somehow, changed into a self-adjoint one 
(Ritz method). That is not obviously an easy task; it could, however, be satisfac- 
torily overcome following one of the procedures suggested by Tonti [ 163, either 
“transform(ing) the given problem into another one with same solutions,” or 
“chang(ing) the bilinear form,” or, finally, “chang(ing) the function.” 

We shall try here to follow the first suggestion, as previously done by Magri [ 173 
for linear problems, as the one at hand. That involves the inversion of the transport 
operators, which, of course, is an unsolvable problem. A tremendous simplification 
may be formally achieved in the Fourier transformed space, where typically space 
asymptotic theory operates. This procedure can give us a further insight and 
evidence also some peculiar and interesting features of eigenvalue critical equations. 
They shall be presented and highlighted in the last section of the paper. 

3. DIRECT AND ADJOINT SPACE ASYMPTOTIC THEORY 

Space asymptotic theory applied to diffusion and transport problems dates back 
to the heroic and fertile old times of nuclear reactor theory [3] and derives its 
justification from the need of preserving a correct description of the neutron 
migration phenomena and somewhat simplifying the mathematical framework. 
From time to time, it has proved to be a quite efficient and powerful tool, when 
used to derive numerical solutions to the transport problem [18] and to be always 
physically well established [ 193 to allow a deep insight into the problem itself. 
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Besides, one must not forget one of the most important theoretical consequences of 
the model, i.e., the “First Fundamental Theorem of Reactor Physics,” stating the 
space-energy separability of the total neutron flux [3], which has also a great deal 
of practical applications in the neutronic calculations of multiplying systems. 

The limitations of the theory rely on the assumed space form for the angularly 
integrated solution, which, with a diffusion-like feature, obeys the classical 
Helmholtz equation with zero boundary conditions. That restricts its validity to 
optically large homogeneous material systems [20], where boundary effects, which 
are poorly described by the above assumptions, are of relative little importance. 

From this background, the idea of its application as a trial function within a 
suitable variational procedure stems naturally. Therefore it is now necessary to give 
at least the well-known fundamentals of direct asymptotic transport and to present, 
formally and substantially, its adjoint version. 

We suppose to know, either from previous theoretical analyses or experiments, 
the space-energy transfer kernel P(r’ + r, g’ +g, St), that gives the probability 
density that a fission neutron isotropically emitted at r’ within group g’ will be 
finally injected, as a result of a last scattering, about r and Q within group g. 
Setting the average of the transfer kernel on the fission spectrum as 

P8(r’ -9 r, Cl) = 2 X,.P(r’ -+ r, g’ -+ g, !A) (4) 
g’= 1 

we can write a stationary direct transport balance integro-differential equation in 
the following quite unconventional form: 

IR .V@,(r, S2) + C,@,(r, Q) 

1 

(I 

G 

=- 
Y, v 

dr’ C Pg(r’ + r, i2) vC,,, I 
@,(r’, Cl’) CM’ 

g’= 1 R’ 

+ E f v.ZfRz j Qg.(r, a’) dn’ , 
g’= I R’ I 

(5) 

where with y, we denote the eigenvalue coherent with asymptotic theory. It is 
widely known that the adjoint function, at least for the classical integro-differential 
equation, may be interpreted as the “importance function” [21,22]. Within the 
scheme that we have used to obtain (5) above, we can also write the balance for 
importance @l (r, Q) : 

1 
=- 

{I 
Jr’ 

Yu v 
fJ vC,, ja, &I’ q52 (r’, Q’) Pg,(r’ -+ r, Cl’) 

g’= 1 

+ 2 5 xsr ja, q+,‘(r, W) &I’}. 
g’= I 

(6) 
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It is worth recalling the fact that (6) can be deduced formally from (5) with a sim- 
ple mathematical adjoining operation, with no physical consideration whatsoever. 

Both Eqs. (5) and (6) can now be treated in the frame of asymptotic theory, 
which, in short, implies: 

(a) The extension of the space domain into infinity, thus formally simplifying 
the space dependence of the kernel, on the distance 1 r - r’l alone, explicitly 
P&( 1 r - r’ 1, n . ((r - r’)/l r - r’ I )), and letting V cover the whole three-dimensional 
space R3. 

(b) The application of the Fourier transform from r into k to take care of the 
space dependence (and especially of the convolution integrals). 

(c) The derivation of a solvability (criticality for yO = 1) condition for the 
homogeneous equation, which is exactly the same (as obvious) for (5) and (6), 
namely 

Such a condition may be derived, as usual, when a non-everywhere vanishing 
solution for either 0 or (0 + is looked for. Equation (7) verified at all points of the 
sphere identified by ) k I = B,. 

(d) The use of all above results to state the separability theorem for the total flux 
and importance as 

It is well worth noticing the complete independence of spectra $, and $,+ on the 
value of asymptotic eigenvalue yO; only the buckling B,,, actually affects such 
spectra. 

The theory sets the space form of the solution (identical for direct and adjoint 
problems) from its Fourier transform as 

F(r; BM) = 1 dw e-ieMu.r U(B,o) 
0 

(9) 

leaving the “geometry function” U undefined. Once a choice is made, any specific 
geometry may be described. In the present work we have restricted our attention to 
isotropic scattering only. In this case, each group component of the direct spectrum 
will turn out to be a solution of the coupled algebraic system 

Gg= g = 1, . . . . G, 
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where by definition r, is the Fourier transform of the transport kernel 

On the other side, the adjoint spectrum can be worked out as 

(12) 

It turns out, in a straightforward way, that both @, and Ic/,+ are only dependent on 
the value of the buckling and are totally independent on the eigenvalue y,. That 
might not be true for other formulations of the eigenvalue itself. B, identifies also 
the volume within R3 where the space asymptotic solution is physically meaningful, 
i.e., where F(r; BM), from (9), does not change its sign. 

Formulae (8) are exactly the ones that we shall be using in the following within 
our variational principle to determine direct and adjoint trial functions. This choice 
is obviously physically founded, since it preserves much of the transport features of 
the problem, so a good performance of the principle may be foreseen already at the 
present stage, at least for optically large systems. 

4. RESULTS USING SPACE ASYMPTOTIC TRIAL FUNCTIONS 

Now trial fuctions (8) can be inserted into the Galerkin variational principle, as 
stated by (3), to obtain explicit values for y. 

We shall first present some results for plane geometry (Table I) for the one speed 
case (G = l), for which “exact” reference values are currently available. The table 
reports also some results obtained when the variational principle is used not in con- 
nection with the exact transport Eq. (1) but rather with its various order discrete 

TABLE I 

Eigenvalues for the Monokinetic Integral Transport Equation in Plane Geometry 

Slab 
thickness 

m. f. p. 

Exact 
Reference 

values 

141 Transport s-2 

Variational 

s-4 S-8 S-512 

11.3310 0.980392 0.978569 0.977507 0.978541 0.978569 0.978569 
6.6004 0.952381 0.94638 1 0.941212 0.946181 0.946378 0.946382 
4.2268 0.90909 1 0.896138 0.880398 0.895127 0.896097 0.896132 
2.5786 0.833333 0.80963 1 0.769302 0.804589 0.809389 0.809695 
2.oooo 0.783024 0.753733 0.696151 0.743909 0.753097 0.753730 
1.4732 0.714286 0.619297 0.599830 0.660589 0.677447 0.679296 
1.0240 0.625000 0.585696 0.483442 0.552972 0.580481 0.585693 
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ordinate approximations. As it is well known [23], such approximations may be 
cast into integral form by simply substituting the exact kernel-in plane geometry 
&!?,(Zi 1 x - x’ 1 )-with an approximate one, obtained by a suitable superposition of 
exponentials-in plane geometry 4 C”, = r ( wa/ps) e-z~IX+x’I’~~. Sets { +vs} and { pfi} 
are constituted by weights and abscissae, respectively, of a numerical integration 
formula. If chosen according to Gauss-Legendre rule, classical discrete ordinate S,, 
P,- r model is to be found. We recall the reader’s attention upon the fact that S2 
coincides with diffusion theory. For the approximate kernel cases, all space integrals 
in (3) can be analytically computed, since F(r; BM) - cos(B,x). If, on the other 
side, the exact transport kernel is used, the integrals may be computed to any 
wanted degree of accuracy through conventional integration routines [24]. 

As it can be seen in Table I, the accuracy of the variational techniques gets 
poorer and poorer as geometrical dimensions decrease. That is of no surprise, as 
asymptotic trial functions approach exact eigenfunctions only for optically large 
systems. It turns out that for optically small systems better results may be achieved 
using different trial functions, such as low order polynomials, for instance, using 
classical procedures such as the ones proposed in [24]. 

Tables II and III are devoted to three energy group calculations. Table II, besides 

TABLE II 

Material Data and Normalized Asymptotic Critical Spectra for Three Group Calculations 

‘?-* 1 2 3 

Common data 

0.23987 0.63517 1.2382 
0.20109 0.03519 0.0 
0.0 0.55464 0.050833 
0.0 0.0 1.1109 
1.0 0.0 0.0 

Case (a) (critical thickness 150 cm) 

3.72663 1.49242 0.16784 
0.62134 0.27073 0.10793 
0.08878 0.13459 0.77661 

Case (b) (critical thickness 100 cm) 
3.8137-3 1.5273-2 0.17177 
0.62225 0.27017 0.10758 
0.08855 0.13458 0.77686 

Case (c) 
4.2881-3 
0.62710 
0.08730 

(critical thickness 50 cm) 

1.7173-3 0.19313 
0.26717 0.10573 
0.13456 0.77814 

Nore. All data in c.g.s. unit system. 
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TABLE III 

Three Energy Group Eigenvalues 

Slab Variational 
thickness Reference 

(cm) Case values Transport s-2 S-4 S-8 s-512 

150 a 0.999966 0.999965 
175 a 0.999743 0.999723 
125 a 1.000329 1.000363 

100 b 0.999840 0.999884 
125 b 0.997953 0.999162 

75 b 1.008412 1.001398 

50 c 0.998741 0.999112 
60 C 0.996888 0.996869 
40 C 1.001881 1.003023 

0.999975 
0.999728 
1.000380 

0.999918 
0.999180 
1.001486 

0.999941 
0.997052 
1.00365 1 

0.999966 
0.999723 
1.000364 

0.999885 
0.999164 
1.001404 

0.999121 
0.996887 
1.003066 

0.999965 
0.999723 
1.000363 

0.999884 
0.999163 
1.001401 

0.999113 
0.996882 
1.003048 

0.999965 
0.999723 
l.CQO363 

0.999884 
0.999163 
1.001401 

0.999112 
0.996882 
1.003047 

Note. Case (a) 150 cm, case (b) 100 cm, case (c) 50 cm are asymptotic critical structures. 

material data, reports also the asymptotic direct and adjoint critical spectra as 
calculated by formulae (10) and (12). When calculations for non-asymptotically 
critical reactors are performed, the spectra obtained using bucklings corresponding 
to actual geometries are of course used. Reference values concerning multigroup 
calculations have been obtained through a numerical iterative procedure, relying on 
the integral transport equation, initialised by space asymptotic results. Such eigen- 
values can be trusted up to six significant figures. 

The tables put into clear evidence both the good performance of asymptotic 
theory and the convergence trend of S, calculations. 

Finally, Tables IV and V report some results derived within the two group 
scheme. 

5. SYMMETRIZATION PROCEDURES AND RESULTS 

A general problem defined by non-symmetric invertible operator i with eigen- 
value I 

ill=h (13) 

can be converted into a symmetric one, through the same definition of the bilinear 
functional “scalar product,” by formal application of a suitable operator 3 as [16] 

The determination of $ may become quite cumbersome for some 
problems-transport is one of them, and it is analytically impossible, at least if 
operating within the physical phase space. However, since we will apply all the 
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TABLE IV 

Material Data and Normalized Asymptotic Critical Spectra for Two Group Calculations 

g+ 1 2 

Common data 

0.27502 1.27329 
0.24799 0.014141 
0.0 1.11757 
1.0 0.0 

Case (a) (critical thickness 150 cm) 

7.63763 0.21949 
0.91681 0.08319 
0.13853 0.86147 

Case (b) (critical thickness 100 cm) 

7.8261-3 0.22491 
0.91688 0.08312 
0.13826 0.86174 

Case (c) (critical thickness 50 cm) 

8.8361-3 0.25394 
0.91725 0.08275 
0.13682 0.86318 

Nofe. All data in c.g.s. unit system. 

TABLE V 

Two Energy Group Eigenvalues 

Slab Variational 
thickness Reference 

(cm) Case values Transport s-2 s-4 S-8 S-512 

150 a 0.999947 0.999955 0.999967 0.999955 0.999955 0.999955 
175 a 0.999645 0.999636 0.999644 0.999636 0.999636 0.999636 
125 a 1.000439 1.000478 1 .wO499 1.000479 1.000478 1.000478 

100 b 0.999773 0.999849 0.999893 0.99985 1 0.999849 0.999849 
125 b 0.998896 0.998903 0.998925 0.998904 0.998904 0.998903 

75 b 1.001579 1.001835 1.001945 1.001841 1.001838 1.001837 

50 C 0.998262 0.998845 - 0.999228 0.998857 0.998846 0.998845 
60 C 0.995762 0.995952 0.996174 0.995959 0.995959 0.995959 
40 C 1.002517 1.003891 1.004674 1 II03928 1 .@I3906 1.003904 

Note. Case (a) 150 cm, case (b) 100 cm, case (c) 50 cm are asymptotic critical structures. 
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information obtainable from space asymptotic theory, it seems appropriate trying 
to operate in the three-dimensional Fourier transformed space. Therefore, after 
introducing as s,(k) the F-transforms of @Jr) into k, and observing the 
convolution nature of the integral appearing in (1) we can write 

d,(k)=;( zt ~g+m,,(k,)T,(lki), g = 1, . . . . G. 
g’= I 

(15) 

Problem (15) can be written in the self evident compact matrix form, with a 
structure at all similar to (13) 

i+WB, 

where it must be noted that 4 is an algebraic matrix operator, parametrically 
dependent on 1 k I. Without going on into the symmetrization procedure, already at 
the present stage, we might derive a variationally founded explicit eigenvalue for- 
mula, as it follows. Equation (16) can be formally written in the antitransformed 
space 

and principle (3) applied: 

(18) 

If an asymptotic direct trial function vector CD is employed, since each of its com- 
ponents obeys the Helmholtz equation and thus has a Dirac’s delta function 
behaviour with singularity for 1 k 1 = B, in the Fourier transformed space, we can 
write (18) as 

(19) 

which constitutes a formula suitable for the estimation of y. Coherently with space 
asymptotic theory, all space integrals in (19) will be carried out over the whole 
geometry space R3. The space part will, however, cancel off. 

Now the symmetrization procedure can be worked out in all details, to obtain 
the algebraic symmetrization operator, which does not present any difficulties and, 
for consciseness’ sake, shall here be omitted. It can be shown that such operator 
coincides simply with 2’. Therefore 

has the same solution as (16) and 2 + 2 is symmetric. 
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TABLE VI 

Two Group Eigenvalues with Symmetrization Procedures 

Slab 
thickness 

(cm) 

150 
175 
125 

100 
125 
15 

50 
60 
40 

Case 

a 
a 
a 

b 
b 
b 

c 
c 
C 

Reference Asymptotic Formula Formula 
values values (19) (21) 

0.999941 0.999999 0.999999 0.999999 
0.999645 0.994154 0.999480 0.999664 
1.00@439 1.008694 1.000862 1000555 

0.999173 0.999999 0.999999 0.999999 
0.998896 0.984400 0.998419 0.998980 
1.001579 1.033620 1.003403 1.002188 

0.998262 0.999999 0.999999 0.999999 
0.995762 0.953605 0.994770 0.996630 
1.002517 1.084802 1.009522 1.006086 

An extended Ritz variational principle may be written, using the same formal 
trick which led us to (19), based on the properties of the transform of asymptotic 
@, namely 

The same cancellation of space integrals will occur here as in (19). Formulae (19) 
and (21) are peculiar criticality relationships, whose performance is shown in 
Table VI. It must be noted that they give coincident results with asymptotic theory 
only when yO=y= 1. 

Theoretically, formula (21) constitutes a by far better achievement in multigroup 
theory than any other variational estimate presented in the paper, since it is 
founded on a self-adjoint symmetric problem and, thus, can effectively be associated 
to a minimization of the functional employed, with all the formal and practical 
consequences that such a matter implies. 

6. CONCLUSIONS 

Some formulae suitable for estimating the neutron transport eigenvalue have 
been deduced, their physical meaning and significance discussed, and some selected 
results presented. These formulae have been derived using classical variational for- 
mulations, currently employed in transport theory, extended to the ,multienergy- 
group model. 

In order to give a sound theoretical foundation to the whole variational 
framework, a symmetrization technique has been exploited in the Fourier transfor- 
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med domain. As trial functions within the variational functional the results of 
standard space asymptotic energy dependent theory have been employed. 

Numerical results are excellent. Therefore it seems promising to extend the study 
and investigate the possibility of utilizing similar variational procedures in the 
attempt of generating efficient numerical techniques in order to solve problems with 
a material and geometrical complexity larger than the one here considered, such as 
the ones effectively encountered in practical nuclear reactor applications. 
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